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Compressed and sintered porous solids are simulated by random-loose aggregates of spheres that 
are distributed in size and partially overlapped to achieve the required porosity. The resulting 
porous networks closely capture the morphological details of diffusing channels within granular 
materials commonly used as catalyst supports. Effective diffusivities in these model solids are 
calculated by Monte Carlo techniques that allow the probing of representative regions of the void 
space throughout the Knudsen, transition, and molecular diffusion regimes. Simulated diffusivities 
and tortuosity factors are in excellent agreement with experimental observations. These simulations 
also allow the calculation of accurate pore-size distributions and of transition-region diffusivities, 
previously estimated by simple geometric arguments and by the Bosanquet approximation, respec- 
tively. Mean pore radii calculated from surface area (S) and porosity (~ A) data (% = 2qb A/S) closely 
resemble the exact values obtained in our simulations for compressed solids but less so for sintered 
materials. Our simulations show that tortuosity factors, when properly defined and calculated, are 
intrinsic properties of porous solids, and identical in the Knudsen and molecular diffusion re- 
gimes. © 1991 Academic Press, Inc. 

1. INTRODUCTION 

Reactant and product transport through 
complex and often dynamic porous materi- 
als are essential requirements for stoichio- 
metric and catalytic gas-solid reactions. 
Transport limitations frequently restrict the 
arrival of reactants to and the removal of 
products from reactive sites. They often 
control reaction rates and selectivity as well 
as the formation of deposits that modify the 
chemical reactivity and the pore structure. 

Diffusivity measurements require testing 
of representative samples at conditions that 
avoid adsorption and diffusion on the pore 
surfaces (1). Data interpretation and extra- 
polation to reaction conditions or to related 
materials require detailed characterization 
of the pore structure and the use of an appro- 
priate average pore radius (Knudsen diffu- 
sion regime) or of an equivalent capillary 
diffusivity (transition diffusion regime) (2). 
These difficulties are apparent in the wide 
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range of tortuosities reported in the litera- 
ture (3, 4). 

Porous solids are traditionally described 
by capillary network models ranging from 
simple parallel arrangements of uniform cyl- 
inders to models of tortuous capillaries of 
varying size and orientation (Fig. la). These 
models do not include the effects of dead 
ends, pore branching, and fluctuating pore 
size. As a result, their use requires empirical 
tortuosity factors that incorporate not only 
the intrinsic geometric tortuosity of the pore 
structure, but also corrections for the inade- 
quacies of the respective models. Bethe lat- 
tice networks (2, 5) of randomly intercon- 
nected capillaries distributed in size remove 
some of the limitations of earlier capillary 
bundle models (Fig. lb). However, an 
equivalent connectivity is still required in 
order to account for the lack of lattice recon- 
nections. 

A priori estimates of effective diffusivities 
in porous solids require detailed descrip- 
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FIG. 1. (a) Schematic representation of pore network 
of unconnected capillaries. (b) Schematic representa- 
tion of a pore network simulated with 3-coordinated 
Bethe lattice. 

tions of important geometric and topological 
properties, such as local fluctuations in pore 
size, shape, and connectivity, that cannot 
be directly measured with available charac- 
terization techniques. Here, we report new 
Monte Carlo simulation procedures for the 
creation of random assemblages of micro- 
spheres and for the estimation of effective 
diffusivities in such model porous struc- 
tures. Our approach incorporates many of 
the pioneering features of the sphere-pack- 
ing models of Evans and coworkers (6). We 
extend their work significantly by creating 
pore structures that more closely resemble 
many porous materials used as catalyst sup- 
ports. We also introduce a new and efficient 
simulation procedure that permits the sam- 
pling of representative regions of the pore 

structure in the molecular and transition dif- 
fusion regimes. 

2. DIFFUSION IN POROUS SOLIDS 

The mechanism by which molecules dif- 
fuse within pores depends on the ratio of 
the characteristic pore dimension (rp) to the 
mean free path (h). For h ~ rp and h >> rp, 
transport is dominated by molecule-mole- 
cule and molecule-surface collisions, re- 
spectively. These mechanisms are known as 
bulk and Knudsen regimes; their respective 
diffusivities are given by 

D b = Xv /3  (bulk) (1) 

D k = 2rpv/3  ( K n u d s e n ) ,  (2) 

where v is the mean molecular velocity (8). 
Equation (2) is strictly valid for long cylin- 
drical pores. In the transition diffusion re- 
gime, where X and r o values are similar, the 
Bosanquet equation (9) is commonly Used: 

D t = [D~- l -t- D k t]- l; (3) 

again, it is rigorously valid only for diffusion 
within a long cylindrical pore. The calcula- 
tion of effective diffusivities in a porous 
solid requires that we modify the above 
equations in order to account for the spa- 
tially changing size, shape, and branchiness 
of the pores. In addition, corrections must 
be made for the presence of solids th~it take 
up volume otherwise available for transport. 
Thus, effective diffusivities in porous solids 
(D e ) are conventionally calculated by 

D e = ~ B D / r ,  (4) 

where qb B is the accessible porosity con- 
tained within interconnected backbones, 
D is an equivalent diffusivity avei'aged over 
the pore-size distribution (accounting for 
contributions of pores of different size), and 
r is the tortuosity factor. 

The tortuosity factor measures ttie in- 
creased dl~ffusion pathlength imposed b~, the 
presence of solid Obstacles. I t i s ,  therefore', 
an intrinsic geometric proper tyof  the solid; 
it should be independent of the diffusion 
mechanism, in practice; however, tortuosi- 
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ties frequently become adjustable parame- 
ters that compensate for inadequacies in 
evaluating the various terms of the defining 
Eq. (4). First, the equivalent diffusivity D 
does not take into account the connectivity 
of the pore space. Also, poorly inferred 
(from adsorption or porosimetry data) cylin- 
drical pore radii are used to describe the 
irregular shape of the pore cavities. More- 
over, total accessible porosity, q~A, rather 
than backbone porosity, is commonly used 
in Eq. (4). The backbone porosity, ~ B  is 
the proper choice because unlike qbA, it ex- 
cludes dead ends that do not contribute to 
transport (2, 5). Yet, Eq. (4) has been widely 
used. 

In the bulk regime, diffusion does not de- 
pend on pore size, and D is simply replaced 
by D b. In the Knudsen and transition re- 
gimes, the calculation of D requires that we 
include the contribution from pores of dif- 
ferent sizes. Two approaches have tradi- 
tionally been used. The first, proposed by 
Satterfield and co-workers (3), estimates an 
average pore radius ?p from experimentally 
measured accessible porosity (qb A) and sur- 
face area per unit volume (S): 

-fp = 2 dpA/s. (5) 

This average pore radius is then used to 
calculate Dt as a surrogate forD. The second 
approach, propo_sed by Wang and Smith 
(10), estima[es D by averaging D t o v e r  the 
entire pore-size distribution f(r): 

-D = f Dt(r)f(r) dr. (6) 

Thus, both approaches incorporate the role 
of fluctuating or distributed pore sizes only 
in an average sense and without explicitly 
accounting for pore interconnections and 
shape irregularity. Therefore, these ap- 
proaches often lead to tortuosity values 
much greater than actual geometric path- 
lengths (12) and sensitive to temperature 
and pressure (I0, 11). These tortuosity fac- 
tors include not only an iocreased diffusion 
pathlength, but other factors that compen- 
sate for the inappropriate use of accessible 
rather than backbone porosity and for inac- 

curacies in the D estimates required in Eq. 
(4). 

3. S I M U L A T I O N  P R O C E D U R E S  

3.1 Pore Structure Model 

Typical catalyst support pellets often con- 
sist of macroscopic aggregates of touching 
or partially overlapping microspheres with 
diffusion channels defined by the voids be- 
tween them. Scanning electron micrographs 
of commonly used silica (Shell $980B), alu- 
mina (Linde, RT-12), and titania (Degussa 
P25) support structures are shown in Fig. 2. 
Two major steps are involved in the fabrica- 
tion of these materials. The first is the forma- 
tion of loosely bound assemblages of spheri- 
cal microparticles by sol-gel processes. The 
second is the porosity (and mechanical 
strength) control by compression, extru- 
sion, or thermal sintering. The internal sur- 
face area and characteristic pore dimensions 
of the resulting material are determined by 
the size of the starting microspheres and by 
the degree of compression and sintering. 

In order to simulate these porous struc- 
tures, we start our computer simulations by 
packing spheres in three dimensions. We 
create macroscopic assemblages of spheres 
under a gravitational field using packing 
rules consistent with loading procedures in 
slowly settled packed beds (7). The spheres 
can be monosize or varied in size and non- 
porous or themselves consisting of clusters 
of yet smaller spheres; they are placed ran- 
domly or at specified positions within a mac- 
roscopic aggregate. These packing proce- 
dures leads to random-loose porous 
structures that contain key geometrical and 
topological features typical of diffusing 
channels within porous solids. These pack- 
ings are subsequently modified by partial 
overlap and random removal of spheres in 
order to simulate porosity changes caused 
during compression or sintering. Compres- 
sion is simulated by increasing the radii of 
the spheres to an extent prescribed by a 
distribution function until a specified poros- 
ity is attained. Thermal sintering is simu- 
lated by randomly removing spheres from 



FIG. 2. Scanning electron micrographs of commonly used catalyst support structures (A) SiO2; (B) 
A1203; (C) TiO 2. 

460 



EFFECTIVE DIFFUSIVITIES IN CATALYTIC PELLETS 461 

an aggregate previously subjected to sig- 
nificant overlap (porosity equal to 0.05). 
While neither of these routes describes the 
physical processes involved in actual fabri- 
cation procedures, their resulting pore vol- 
ume characteristics are remarkably similar 
to those found in compressed and sintered 
structures. Therefore, in what follows, we 
refer to these model materials as "com- 
pressed" and "sintered" solids, respec- 
tively. Cross-sectional views of three-di- 
mensional simulated structures are shown 
in Fig. 3. Three-dimensional views of actual 
and simulated structures are shown in Figs. 
4 and 5. 

3.2 Diffusion Simulations 

Effective diffusivities are calculated by 
monitoring the displacement of molecules 
within the simulated three-dimensional po- 
rous structures. No assumptions are needed 
about the size, shape, and connectivity of 
the pores; only the sphere-size distribution 
and the extent of overlap (porosity) are re- 
quired. These structural features are natu- 
rally built into the simulated porous struc- 
ture. Molecules are placed at random loca- 
tions within the voids of the model solid 
sample. They move in discrete steps within 
the solid by colliding with the solid surfaces 
and with other molecules. The distances 
travelled between molecular collisions are 
described by a logarithmic distribution of 
free paths that arises from kinetic theory (6). 
For a given solid, the type and frequency of 
the collisions depend on the mean free path. 
At higher pressures (i.e., smaller mean free 
paths), molecular collisions are more likely 
to occur. As the mean free path increases 
(lower pressures), molecules collide against 
solid surfaces with increasing probability. 
Upon collision with solid surfaces, mole- 
cules adsorb momentarily and then desorb 
in directions prescribed by a cosine law. The 
effective diffusion coefficient, D e, is then 
calculated from the Brownian motion re- 
lation, 

(R 2) = 6 Det, (7) 

where (R 2) is the mean-squared displace- 
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FIG. 3. Cross-sectional views of three-dimensional 
simulated porous solids. (a) Compressed solid. (b) Sin- 
tered solid. 

merit and t is the elapsed time. The correct 
application of Eq. (7) requires the proper 
selection of elapsed time (and thus of vol- 
ume in the probed region) and of the number 
of molecules used to calculate (R2). In ef- 
fect, accurate simulations require that mole- 
cules probe representative regions of the 
pore structure. Thus, both long times and 
large number of tracer molecules must be 
used. A few thousand (1000-2000) mole- 
cules with average displacements greater 
than about 10 microsphere diameters were 
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FIG. 4. Three-dimensional views of actual and simulated porous structures. (a) SEM of compressed 
silica microspheres. (b) Simulated compressed solid. 

typically required for accurate and repro- 
ducible diffusivity calculations. 

Computational time is proportional to the 
number of discrete steps required in each 
simulation. As schematically shown in Fig. 
6, the number of steps required to cover a 
given distance increases rapidly as the diffu- 
sion mechanism progresses from Knudsen 
to transition and bulk regimes (i.e., as the 
h/rp ratio decreases). Molecules with small 
mean free paths require a large number of 
collisions in order to cover representative 
regions of the solid. Thus, we found that 

only Kundsen diffusivities (large h) could be 
calculated in a reasonable computing time. 
Transition and bulk diffusivity estimates re- 
quire more efficient simulation techniques. 

Molecular collisions control transport 
rates in the transition and bulk diffusion re- 
gimes; under those conditions, molecules 
probe the presence of the wall only when 
near a solid surface. This suggested a hybrid 
discrete/continuum simulation procedure 
that averages Brownian motion behavior 
away from solid surfaces while monitoring 
discrete steps near solid surfaces. This is 
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FIG. 5. Three-dimensional views of actual and simulated porous structures. (A) SEM ofsintered titania 
microspheres. (13) Simulated sintered solid. 

schematically shown in Fig. 7. Molecules 
advance through the pore space by a se- 
quence of events that depends on whether 
the molecule is inside or outside a pre- 
scribed imaginary boundary layer, 3, that 
surrotmds all solid surfaces. Within this 
boundary layer, only discrete random walks 
are allowed. Outside this boundary layer, 
molecules are allowed to advance in a single 
event (consisting of many individual colli- 
sional events) to a random point on the sur- 
face of the imaginary sphere that makes 
point contact with the nearest solid surface. 
The elapsed time for this event corresponds 
to the first passage time (FPT); it is obtained 

from the solution of the appropriate contin- 
uum diffusion equation governing the 
Brownian motion of molecules in free space 
(13). Thus, in our case, the FPT corresponds 
to the time taken for a molecule to reach the 
surface of an imaginary sphere of radius R 
for the first time. These times are distributed 
according to a probability distribution func- 
tion whose mean value is R2/6Db. The 
boundary layer is required because FPT 
spheres smaller than a given size R = N~ 
(N is the number of mean free paths) lack a 
sufficient number of discrete steps for the 
valid application of the continuum diffusion 
equation. The value of the boundary layer 
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KNUDSEN 
(?p / ~. < 0.05) 

TRANSITION 
(?p / Z. ~ 0 .05-30)  

MOLECULA R 
(rp / ~, > 30) 

FI6.6. Diffusion mechanisms in constrained voids. 

thickness is chosen as an effective compro- 
mise between accuracy and speed of the 
simulations; it equals the radius of  the small- 
est imaginary sphere allowed in the FPT 
calculations. 

4. RESULTS AND DISCUSSION 

4 .1  K n u d s e n  D i f f u s i o n  R e g i m e  

Knudsen  diffusion is the dominant trans- 
port  mechanism when the mean free path of  
the diffusing molecules is much greater  than 
the local pore dimensions. The Knudsen 
simulations consist  of  monitoring the dis- 
placement  of  t racer  molecules as they re- 
peatedly collide with the solid surfaces. 
Therefore ,  during the course of  these simu- 
lations, one can also determine the pore-size 
distribution of  the solid by simply recording 
the distances t raversed by the molecules be- 
tween successive surface collisions. 

Knudsen  diffusivities of  compressed and 
sintered solids were calculated using Eq. 
(7). These results are presented in Fig. 8 as 
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S Zlmaginery Sphere Used 
for FPT Calculation 

FIG. 7. Schematic representation of hybrid discrete/ 
continuum simulation of molecular displacements 
within random pore structures. 

normalized diffusivities. Normalized diffu- 
sivities are defined as 

E = D e / D k ,  (8) 

where Dk is the equivalent Knudsen diffu- 
sivity corresponding to the average pore ra- 
dius calculated from the simulation proce- 
dure. Figure 8 shows that normalized 
diffusivities increase with increasing poros- 
ity but are remarkably independent  of  the 
porosity destruction mechanism (compres- 
sion or sintering). The dependence  of  E on 

is typical of percolating solids (2, 5). A 

• " C O M P R E S S E D  S O L I D "  

• " S I N T E R E D  S O L I D "  0,3 , / ~  / i  

0.2 j / I / "  i / I  .=_ 

,~ , / , / "  inel~tlle¢l 
= 

0.1 /"  ~ I I~r spheriP.a| 

0,0 I ..it- I I I l I I I t 
0.0 0.1 0.2 0,3 0.4 0.5 

Pellet porosity, 

FIG. 8. Normalized effective Knudsen diffusivities 
in simulated compressed and sintered porous solids. 
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FIG. 9. Tor tuos i ty  factors in s imulated compressed  
and sintered porous solids. 

threshold porosity, below which no diffu- 
sion is possible, is clearly observed when 
the fraction of voids reaches about 0.05. 

Although not required in the effective dif- 
fusivity calculations, a tortuosity factor can 
be obtained by combining Eqs. (4) and (8). 
The resulting geometric tortuosities (T = 
~B/E) are shown in Fig. 9 as a function of 
porosity. They depend weakly on porosity 
for • > 0.2 but increase rapidly with de- 
creasing porosity of dp< 0.2 because of the 
increased isolation of void volume in inac- 
cessible and non-conducting dead-end re- 
gions. Tortuosities are similar for com- 
pressed and sintered solids. At very low 
porosities (qb < 0.20), sintered solids show 
slightly higher tortuosities, consistent with 
the higher probability of dead ends and of 
pore volume isolation during the sintering 
process. 

Calculated pore-size distributions (nor- 
malized on a pore volume basis) for com- 
pressed and sintered solids are shown in 
Fig. 10 for various porosity values. These 
distributions resemble those typically ob- 
tained from mercury porosimetry and nitro- 
gen adsorption experiments on porous ma- 
terials. In our simulations, however, we do 
not assume a pore geometry or connectivity. 
Pore sizes reflect the characteristic dis- 
tances that molecules actually travel be- 

tween successive collisions with neigh- 
boring pore surfaces. Sintered solids have 
larger pores for a given porosity because 
large voids are created as neighboring 
spheres coalesce. 

Tortuosity factors (~-) and normalized dif- 
fusivities (E) in compressed and sintered 
solids with a given porosity are very similar 
(Figs. 8 and 9), in spite of the different pore 
generation processes in the two types of sol- 
ids. These results suggest that effective 
Knudsen diffusivities can be estimated a pri- 
ori for random assemblages ofmicrospheres 
by properly measuring a mean pore radius 
(rp). An expression for the effective diffusiv- 
ity can be obtained by combining Eqs. (2) 
and (8): 

Thus, if E is a known function of porosity, 
such as that described by Fig. 8, only a mea- 
surement of ?p is additionally required. In 
principle, pore-size distributions can be ob- 
tained by porosimetry or adsorption meth- 
ods. In practice, pore sizes inferred from 
these techniques require simplified pore 
structure models and are thus subject to in- 
terpretation errors. 

Mean pore radii can also be obtained from 
Eq. (5). This equation requires only porosity 
and surface area measurements that are less 
prone to interpretation errors. Both proper- 
ties (S and qbA) are also readily calculated for 
simulated compressed and sintered model 
structures. Figure l! compares the mean 
pore radii calculated from Eq. (5) v'ith the 
correct values obtained from the diffusivity 
simulations. We conclude that Eq. (5) gives 
an accurate value for the mean pore radius 
of compressed solids. Its use for sintered 
solids is less accurate, but the maximum 
error is less than 25%. These results strongly 
support the use of Eqs. (5) and (9) and of 
the results in Fig. 8 in order to estimate 
effective Knudsen diffusivities, because po- 
tential errors in ? and D e estimates (<25%) 
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FIG. 10. Pore-size distributions in simulated solids. (a) Compressed solids. (b) Sintered solids. 

are much smaller than those reported in ex- 
perimental D e and ~- measurements. 

4.2 Simulated and Experimental 
Knudsen Diffusivities 

Huizenga and Smith (14) have reported 
diffusivity measurements in the Knudsen re- 
gime for porous solids formed by compress- 
ing narrowly distributed silica micro- 
spheres. We have compared our simulation 
results with their experimental values. The 
first step in the simulation consists of assem- 
bling representative samples of micro- 
spheres obeying their experimentally mea- 
sured size distributions. The aggregates 
were subsequently coalesced to achieve 
their experimental porosities (compressed 
solids). Finally, Monte Carlo simulations 
were used to evaluate the effective Knudsen 
diffusivities. 

t~ 2.5 

2 

1.5 

0.5 

Siot,r d So'L...I  j 
Simulation 

Compressed Solid 

0~1 012 013 014 0'.5 016 Oh.7 

Pellet Porosity, 

Simulated (solid lines) and experimental 
(symbols) diffusivities for H2, He, N2, and 
Ar in six different solids are compared in 
Fig. 12. The solids consisted of micro- 
spheres of varying radii, ranging from 52 to 
305 nm, and with porosities ranging from 
0.331 to 0.385. The predicted diffusivities 
are in excellent agreement with the experi- 
mental values, demonstrating the adequate 
representation of the solid as well as the 
validity of our diffusion simulation pro- 
cedure. 

4.3 Transition and Bulk Diffusion Regimes 

In the transition and bulk diffusion re- 
gimes, the number of discrete steps needed 
to probe representative solid regions is ex- 
tremely large and we require the hybrid dis- 
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FIG. 1 1. Mean pore radii as a function of porosity for FIG. 12. Comparison of experimental (14) and simu- 
simulated compressed and sintered porous structures, lated Knudsen diffusivities. 
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crete/continuum approach described in Sec- 
tion 3.2. This technique introduces some 
error by using the solution of Brownian mo- 
tion in unbounded space (continuum diffu- 
sion equation) to approximate the random 
motion within a finite imaginary sphere 
(with radius Nk, N >> 1). 

The diffusivity estimates obtained by the 
hybrid simulation procedure are compared 
with those of exact discrete simulations 
(i.e., without FPT approximations) in Fig. 
13. A model porous solid composed of non- 
overlapping monosize spheres (radius r+) 
having a porosity of 0.417 and a mean pore 
radius of 0.499r+ was used in the compari- 
son. The ?p/h ratio was varied by changing 
h while maintaining the structure (?p) un- 
changed. Normalized diffusivities are de- 
fined as 

E = DE/Dt ,  (10) 

where D t is evaluated at h and ?p = 0.499r+ 
using Eq. (3). Figure 13 shows that a bound- 
ary layer thickness of five mean free paths 
(8 = 5h) adequately reproduces the results 
of the full discrete simulations while signifi- 
cantly reducing computing time. The appli- 
cation of FPT approximations to imaginary 
spheres with radii less than about 5h (i.e., 
boundary layer equal to 5k) results in fast 
but inaccurate diffusivity estimates. In con- 
trast, FPT simulations for boundary layers 

greater than about 5h demand excessive use 
of discrete step-by-step monitoring of colli- 
sional events without significantly improv- 
ing the accuracy of the diffusivity estimates. 

The hybrid technique (with a boundary 
layer thickness of 5h) was used to estimate 
diffusivities in all diffusion regimes for 
loosely packed non-overlapped solids (~ = 
0.417). The ?v/h ratio was varied from 0.01 
to 70 by varying h only. The results are 
shown in Fig. 14 in terms of a tortuosity 
factor, defined following Eq. (4), as 

"r = dP B O t / O  e, ( 11 ) 

with the Bosanquet equation for D t [E_._q. (3)] 
replacing the equivalent diffusivity D. Fig- 
ure 14 shows that at both extremes in 
?p/h, where D is rigorously given by D k or 
Db, the tortuosity approaches similar values 
(about 1.8). This clearly demonstrates the 
consistency of the simulation technique in 
accurately calculating effective diffusivities 
throughout all diffusion regimes. As already 
discussed, the geometric tortuosity is an in- 
trinsic property of the porous structure that, 
if properly defined, is independent of the 
diffusion regime. The deviations at interme- 
diate values Of?p/h reflect the inadequacy of 
the Bosanquet equation in describing transi- 
tion diffusion coefficients in an ensemble 
of non-cylindrical pores that vary in size, 
shape, and connectivity. The Bosanquet 
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Fie. 15. Cross-sectional views of three-dimensional aggregates ofmultisize spheres. (a) Gaussian size 
distribution. (b) Segregated spatial distribution. 

equation underestimates diffusivities (maxi- 
mum error - 2 0 %  at ?p/X = 3), suggesting 
that diffusing molecules are able to "detect"  
and use neighboring larger pore openings in 
parallel with the diffusing channels, instead 
of following the strictly sequential mecha- 
nism implied by the Bosanquet equation. 

4.4 Knudsen Diffusivities in Aggregates of 
Multisize Spheres 

Here, we use packing procedures for the 
generation of random-loose aggregates of 
multisize spheres and for subsequent diffu- 
sion simulations in these structures. 
Spheres of size prescribed by a distribution 
function (e.g., Gaussian, bidisperse, or con- 
tinuous) are located within pellets by follow- 
ing the procedures described in Section 3.1. 
Then, porosity is adjusted by partial over- 
lapping of such spheres and effective diffu- 
sivities are calculated in the Knudsen diffu- 
sion regime. 

Our procedures are capable of producing 
aggregates with arbitrary sphere-size distri- 
butions. Here, we illustrate Gaussian distri- 
butions in which the individual spheres are 
either randomly located (Fig. 15a) or segre- 
gated within a macroscopic aggregate (Fig. 
15b). The latter lead to "bimodal" pore 
structures; they consist of aggregates of 

small spheres of mean diameter dj located 
within larger spherical voids of mean diame- 
ter d2, that are themselves distributed ran- 
domly within a macropellet of diameter D 
(D ~> d2). Figure 15 shows cross-sectional 
views of these two simulated solid struc- 
tures. The structure shown in Fig. 15a was 
obtained by randomly packing and subse- 
quently overlapping spheres obeying a 
Gaussian distribution with a mean sphere 
radius rs and a standard deviation (o-) of 
0.25r~; the distribution was truncated at rs 
-+30-. The segregated solid (Fig. 15b) was 
obtained by inserting aggregates of small 
spheres (mean diameter d I = 0.1 d 2) within 
the voids left by the removal of large spheres 
(micropellets) from a previously assembled 
macroscopic aggregate (macropellet). 
These two types of model solids resemble 
those typically found in many catalyst sup- 
port pellets. 

The structural (pore-size distribution) and 
diffusive properties of Gaussian porous sol- 
ids are analyzed by varying the breadth 0- of 
the sphere-size distribution. Effective 
Knudsen diffusivities and associated mean 
pore radii are shown in Table 1. These re- 
sults show that normalized effective diffu- 
sivities [E, Eq. (8)] are largely unaffected by 
increasing 0- from 0 (monosize) to 1.5r~ (a 
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T A B L E  1 

Mean Pore Sizes and Knudsen  Diffusivity Factors  

for Gauss ian  Non-over lapping  Solids 

o- q~ S"  E 7p h ?0-Ratio' 

0 0.417 1.744 0.233 0.499 0.958 

0.33 0.412 1.748 0.233 0.496 0.950 

0.50 0.407 1.768 0.235 0.478 0.963 

0.67 0.405 1.788 0.228 0.469 0.966 

0.83 0.402 1.802 0.232 0.468 0.953 

1.00 0.400 1.820 0.230 0.462 0.951 

1.50 0.397 1.870 0.229 0.447 0.950 

" Units of  reciprocal  mean sphere radius. 
b From diffusivity s imulat ion,  units of mean sphere 

radius. 
' Ratio of mean pore radius calcula ted from Eq. (5) 

to that obtained from diffusivity simulat ions.  

broad distribution). The mean pore radii cal- 
culated by the diffusivity simulations de- 
crease as we increase the breadth of the size 
distribution. This is a consequence of the 
compaction effect that is clearly reflected 
in a slight decrease in void fraction as o- 
increases. We observe, however, that mean 
pore radii estimated from Eq. (5) also de- 
crease slightly as or increases; their values 
are slightly lower than those calculated in 
the simulation procedure (ratio -0.95-0.96) 
but nearly independent of the breadth of the 
Gaussian distribution. Therefore, we con- 
clude that Eq. (5) provides an accurate esti- 
mate of the mean pore radius required for 
calculations of effective Knudsen diffusivit- 
ies in random assemblages of Gaussianly 
distributed spheres. As previously found for 
single-size spheres, these estimates remain 
accurate as we decrease the porosity by 
overlapping spheres in compressed solids, 
but significantly less so in sintered solids. 

The corresponding effective Knudsen dif- 
fusivities and mean pore radii for segregated 
solids are shown in Table 2; the solids con- 
sist of non-overlapping monosize spheres 
having total porosities in the range 0.682 to 
0.660. The latter value is attained for d~/d2 
-< 0. I and reflects a contribution from both 

small (~ = 0.243) and large (~ -- 0.417) 
voids in the solid. As expected, the calcu- 
lated mean pore radius ffp) decreases as we 
decrease the sphere-size ratio (dl/d2) be- 
cause molecules probe a pore structure that 
contains increasing amounts of smaller 
pores. The increased porosity due to micro- 
pellet voids results in higher effective diffu- 
sivities DE than in the monosize case (dj/d2 
= 1). This enhancement, however, disap- 
pears as the size ratio decreases because the 
smaller pores eventually contribute little to 
net macroscopic transport throughout the 
macropellet. For example, the transport en- 
hancement by micropellet pores is less than 
3% for a size ratio of 0.1. 

Mean pore radii calculated from diffusiv- 
ity simulations and from Eq. (5) are in close 
agreement for segregated pore structures 
(Table 2). However, neither is appropriate 
for the calculation of the equivalent diffu- 
sion coefficients (Dk) that are required for 
effective diffusivity estimates (Eq. (8)). Net 
macroscopic transport occurs increasingly 
within the larger voids between micropellets 
as the size ratio decreases. Thus, while 
probe molecules sample the entire void 
space and reveal the true pore-size distribu- 

T A B L E  2 

Mean Pore Sizes and Effective Knudsen Diffusivities 

of Bimodal Non-over lapping Solids 

dt /d  2 • S" D~/v ~' ~p' rp- Y' 
Ratio J 

1 0.417 1.744 0.117 0.499 0.958 1.00 
0.25 0.682 3.820 0.185 (I.369 0.968 1.57 
0.20 0.670 4.950 0 .151  0.776 0.981 1.29 
0.166 0 . 6 6 5  6.060 0.140 0.226 0.971 1.20 
0.125 0.663 8.087 0 . 1 2 3  0.167 0.982 1.05 
0.10 0.660 10.197 0 .121  0.132 0.981 1.03 

" Units of reciprocal of mean sphere radius. 
h Units of mean sphere radius. 
' From diffusivity simulations, units of mean sphere radius. 
a As (3) in Table I. 
" Enhancement factor; ratio of effective Knudsen diffusivity 

D~ for a given ratio to that for a ratio of 1. 
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Fic. 16. Pore-size distributions in simulated bimodal 
solids. 

tion within a macroscopic sample, they 
cover macroscopic distances predominantly 
while traveling through larger voids. In the 
limit of small size ratios, typical of catalyst 
support pellets, our simulation measures 
transport exclusively through the larger 
voids without any significant use of the 
smaller pores within micropellets. 

Our simulation procedure samples the en- 
tire pore structure and allows the calculation 
of pore-size distributions irrespective of size 
ratio. Figure 16 clearly shows the presence 
of a bimodal pore-size distribution con- 
sisting of pore structures within and be- 
tween micropellet aggregates. However, an 
important conclusion of our simulations is 
that the additional porosity within micropel- 
lets does not contribute to net macroscopic 
transport for size ratios less than about 0.1. 

Segregated bimodal pore structures pose 
unique problems in the estimation of proper 
effective diffusivities needed in catalytic re- 
action rate calculations. First, for macro- 
scopic transport, only the porosity between 
micropellets and its associated tortuosity 
factor are required in Eq. (4). Thus, Eq. (5) 
no longer describes the mean pore radius 
required in equivalent diffusivity estimates, 
because total surface area and porosity are 
measured throughout the solid and do not 
solely reflect the properties of the conduct- 
ing backbone channels between micropel- 
lets. When possible, we can overcome these 
difficulties by an experimental or mathemat- 

ical deconvolution of the pore-size distribu- 
tion, which distinguishes the porosity and 
surface area contained within the two pore 
systems. Then, Eq. (5) remains valid in the 
limit of dl/d2 < 0.1; porosity and surface 
area between micropellets can be used to 
calculate effective diffusivities across the 
macroscopic pellet, while those within the 
smaller voids are used to calculate micropel- 
let diffusivities. The latter become crucial 
for transport-limited reactions because a 
predominant fraction of the surface area, 
and thus of the stoichiometric or catalytic 
function, is contained within such micropel- 
lets. The interplay of macropellet (DM) and 
micropellet (Din) diffusivities in the design 
of segregated pellets for transport-limited 
catalytic reactions is the subject of the last 
section in this report and of on-going re- 
search in our laboratory (15). 

4.5 Bimodal Pore-Size Distributions and 
the Design of Catalyst Pellets 

The rate of a first-order catalytic reaction 
within a segregated macropellet of radius 
RM, and consisting of micropellets of radius 
Rm, is given by 

Rate = 4rtRMCoDm(toMCOth tOM -- 1) (12) 

with Thiele moduli defined as 

SMR (Om) 
to2 = Rm ~M (tomCOth tom -- I) (13) 

to2 = kSmR2 
Dm ' (14) 

where C O is the reactant concentration at the 
pellet surface, k is the reaction rate con- 
stant, and Sm and SM are the micropore and 
macropore surface areas per unit volume, 
respectively. These expressions show that 
reaction rates in a transport-limited segre- 
gated pellet depend on both the micropellet 
(D m, Sin) and the macropellet (DM, SM) diffu- 
sivities and surface areas. 

The complex interplay between the radii 
and surface area within a micropellet (con- 
trolled by the size and degree of overlap 
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of the composing microspheres) and those 
between the micropellets (defined by their 
size and extent of overlap) is clearly illus- 
trated by Eqs. (12)-(14). Large micropores, 
although desirable for transport, occupy 
volume otherwise available for catalytic 
solid (i.e., D M increases but Sm decreases). 
In contrast, the small micropores that pro- 
vide most of the catalytic surface areas slow 
down transport (i.e., Sm increases but D m 

decreases). These competing effects clearly 
suggest that reaction rates in bimodal segre- 
gated structures can benefit significantly 
from optimal selection of characteristic mi- 
cropore and macropore dimensions. The op- 
timization of support structural properties 
for rate and selectivity improvements in ca- 
talytic reactions is discussed in detail else- 
where (15). 

5. CONCLUSIONS 

We describe here new methods for the 
generation of model porous structures that 
realistically capture morphological features 
of many catalyst supports. These structures 
consist of random-loose aggregates of mi- 
crospheres, appropriately overlapped to de- 
scribe porosites experimentally obtained by 
compression or sintering. Effective Knud- 
sen diffusivity calculations within these po- 
rous structures are in excellent agreement 
with reported experimental values. The 
(true) mean pore radii in these porous solids 
differ slightly from those given by the con- 
ventional approximation (2q~A/s) used to es- 
timate equivalent diffusivities within cylin- 
drical pores. 

We also report here the first application 
of a new simulation technique that allows 
representative sampling of the pore struc- 
ture in the molecular and transition diffu- 
sion regimes. This simulation technique 
combines monitoring of discrete collision 
events near solid surfaces with approxi- 
mate averaging techniques (first passage 
time theory) in void regions away from 
them. Effective diffusivities simulations 
thus become possible for the entire range 
of diffusion mechanisms. Our results dem- 

onstrate that the geometric tortuosity of 
random-loose aggregates of microspheres 
is about 1.8 in both the Knudsen and 
bulk diffusion regime. Deviations from this 
value in the transition diffusion region 
(<20%) result from inaccuracies in the 
application of the Bosanquet equation to 
calculate diffusion coefficients within 
equivalent cylindrical pores in the transi- 
tion diffusion region. 

Mean pore radii and Knudsen diffusion 
properties in aggregates of multisize 
spheres demonstrate the importance of size 
distribution and of spatial segregation of 
the bimodal pore space. For spheres obey- 
ing a Gaussian distribution of sizes, the 
true mean pore radius required in the calcu- 
lation of an equivalent diffusivity is com- 
pletely characterized by the mean, and 
independent of the breadth, of the distribu- 
tion. For bimodal pore structures, diffusion 
occurs in both micropores and macropores, 
but the latter becomes dominant as the 
ratio of micropore and macropore radii 
decreases. 

On-going studies address the extension 
of the models to include surface diffusion, 
surface-catalyzed reactions, separations of 
mixtures within porous inorganic mem- 
branes, and relaxation phenomena (e.g., 
Xenon-129 nuclear magnetic resonance 
(16)) within microporous solids. 

APPENDIX 

Nomenclature 
Co: reactant concentration at pellet 

D: 
Db: 
Dk: 
D~: 
Din: 
DM: 
Dr: 
De: 
D: 
Dk: 
Dt: 
dj,d2: 

surface 
pellet diameter 
bulk diffusivity 
Knudsen diffusivity 
effective Knudsen diffusivity 
effective micropellet diffusivity 
effective macropellet diffusivity 
transition diffusivity 
effective diffusivity 
equivalent average diffusivity 
average Knudsen diffusivity 
average transition diffusivity 
mean diameter of microspheres 
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E: 

f ( r ) :  
k: 
N:  
R: 

Rm: 
RM: 
rp: 
rs: 
~p: 
(R2): 
S: 
Sm: 

SM: 

t: 
Y: 

normalized effective diffusivity 
pore-size distribution 
reaction rate constant 
number of mean free paths 
radius of imaginary sphere 
radius of micropellet 
radius of macropellet 
pore radius 
microsphere radius 
mean pore radius 
mean-squared displacement 
surface area per unit volume 
surface area per unit volume in mi- 
cropellets 
surface area per unit volume in 
macropellets 
time 
enhancement ratio, defined in 
Table 2 

Greek Symbols 

mean free path 
boundary layer thickness 
mean molecular velocity 
standard deviation 
tortuousity factor 
pellet porosity 
accessible porosity 
backbone porosity 

8: 
p: 

or: 

dpA: 

qbB: 

q/m: Thiele modulus in micropellets 
q~M: thiele modulus in macropellets 
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